- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Ghosh, Swaroop (4)
-
Kundu, Debarshi (4)
-
Chatterjee, Avimita (2)
-
Dokholyan, Nikolay (1)
-
Ekambaram, Srinivasan (1)
-
Ghosh, Archisman (1)
-
Kundu, Satwik (1)
-
Wang, Jian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the evolving field of quantum computing, optimizing Quantum Error Correction (QEC) parameters is crucial due to the varying types and amounts of physical noise across quantum computers. Traditional simulators use a forward paradigm to derive logical error rates from inputs like code distance and rounds, but this can lead to resource wastage. Adjusting QEC parameters manually with tools like STIM is often inefficient, especially given the daily fluctuations in quantum error rates. To address this, we introduce MITS, a reverse engineering tool for STIM that automatically determines optimal QEC settings based on a given quantum computer’s noise model and a target logical error rate. This approach minimizes qubit and gate usage by precisely matching the necessary logical error rate with the constraints of qubit numbers and gate fidelity. Our investigations into various heuristics and machine learning models for MITS show that XGBoost and Random Forest regressions, with Pearson correlation coefficients of 0.98 and 0.96, respectively, are highly effective in this context.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Kundu, Satwik; Kundu, Debarshi; Ghosh, Swaroop (, ACM)
-
Chatterjee, Avimita; Kundu, Debarshi; Ghosh, Swaroop (, ACM)
-
Kundu, Debarshi; Ghosh, Archisman; Ekambaram, Srinivasan; Wang, Jian; Dokholyan, Nikolay; Ghosh, Swaroop (, ACM)
An official website of the United States government
